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ABSTRACT

Large Language Models (LLMs) perform well on basic program-

ming problems. However, they encounter challenges when dealing

with complex tasks involving the use of diverse algorithmic and

data structure skills, particularly programming competition-level

problems. Notably, ChatGPT exhibits proficient performance on

problems it has encountered during its pre-training phase, but this

performance deteriorates when faced with novel problems. Conse-

quently, enhancing the ability of LLMs to address unfamiliar prob-

lems has emerged as a pivotal research focus. The problem-solving

process of LLMs mirrors human programmers’ approach to a cer-

tain extent. When confronted with new programming tasks, human

programmers engage in task planning and codewritingwith the pre-

viously acquired knowledge about algorithms and data structures.

Despite having learned such knowledge, LLMs struggle to effec-

tively apply it when faced with specific new problems. To address

this issue, we constructed a novel dataset, CodeF, which contains a

portion of programming problems that ChatGPT has not previously

encountered. Furthermore, we developed a Knowledge Library tai-

lored for Python programming contest problems and introduced

the concept of Knowledge-Aware Code Generation (KareCoder).

KareCoder bolsters the models’ understanding and problem-solving

capabilities by integrating prompt and knowledge from the library

into the LLMs’ code generation reasoning process, especially on

Pass@1 metrics. Upon testing on the CodeF and APPS datasets,

KareCoder demonstrated outstanding performance in handling

novel problems previously unencountered by LLMs. In contrast

with the code directly generated by ChatGPT, KareCoder achieved
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a relative improvement of 23.3% on the Pass@1 metric on the CodeF

post2021-9 dataset. Additionally, it performs well compared to other

methods when dealing with problems that LLMs have previously en-

countered. Our dataset and experiment data are open-sourced and

can be accessed at https://github.com/CodeGeneration3/KareCoder.
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1 INTRODUCTION

Code generation tasks aim to automatically generate executable

programs based on natural language descriptions. In recent years,

code generation tasks have garnered substantial attention and un-

dergone extensive development in both the academic and industrial

realms. Some prominent applications encompass [1–5]. Specifically,

the recent proliferation of Large Language Models (LLMs) such as

CodeGen [6], CodeX [7] and ChatGPT [8], has not only induced a

profound impact on the domain of code generation but also signifi-

cantly fostered the progress of associated fields, including Natural

Language Processing (NLP) and intelligent software engineering.

Code generation can be conceptualized as a complex reasoning

task. The objective of this task is to transfigure Natural Language

(NL) descriptions into Programming Language (PL) forms. Typi-

cally, this process encompasses two phases: training and inference,

requiring a copious number of natural language-code pairs (<Text,

Code>) as a foundation. High-quality datasets play a pivotal role

in the code generation task. Several related studies [9, 10] have

demonstrated that with the enlargement of the model size, aug-

mentation in the quantity of data and escalation in computational

prowess, the performance of the model accordingly experiences
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Figure 1: Experimental validation of split-difficulties on

CodeF post2021-9 and CodeF pre2021-9 datasets.

enhancement. Nevertheless, empirical evidence suggests that uti-

lizing the model’s training set as a test set for inference may lead

to over-optimized results. Given that the training data for LLMs

are not publicly accessible, datasets frequently employed in code

generation tasks, such as MBPP [11], Humaneval [7] and APPS [12],

may be encompassed in the training set of LLMs. Consequently,

should we use these datasets as test data, whether the genuine test

outcomes would be compromised due to this potential data overlap

constitutes an issue warranting our thorough exploration.

Based on the above thinking, we construct CodeF to investigate

the potential overlap of test data included in the training data of

ChatGPT. This research aims to decipher whether this overlap could

result in an inflation of actual results. We employ the “gpt-3.5-turbo-

0613” model of ChatGPT and use the cutoff time (September 2021)

of ChatGPT’s training data [13] as disclosed by OpenAI. This date

serves as the limit to divide our dataset CodeF1. We used a direct

generation approach with ChatGPT to produce codes for both parts

of the dataset and evaluated the results using Pass@1, Pass@5 and

Pass@10. The results are shown in Figure 1. As Figure 1 demon-

strates, the experimental results on CodeF pre2021-9 outperform

those on CodeF post2021-9, especially regarding problems of easy

difficulty, where the relative difference of Pass@1 between the two

reaches an astonishing 92.7%. The somewhat lower Pass@1 score

for hard difficulty problems in CodeF pre2021-9 might be due to the

excessive complexity of these problems, ChatGPT may not have

successfully captured the features of these problems.

Drawing on the aforementioned results, LLMs have indeed ac-

quired knowledge of problems they encountered during the training

phase. Nonetheless, they appear to lack a strategy for addressing

unencountered problems. This results in the disparity in outcomes

between the two parts of data depicted in Figure 1. The situation is

1CodeF is a novel dataset we have independently designed to meet task requirements,
resolving the issue of potential data obsolescence that may exist in extant datasets
(specifically, the data may be incorporated in the training data of LLMs like ChatGPT).
Detailed information of the dataset can be found in the “Dataset Collection” subsection
in Section 3.1.

akin to a student sitting for an examination: they may effortlessly

solve problems they have previously reviewed, yet struggle with

new and unreviewed problems. With the tutors provide guidance,

the student has a significantly enhanced likelihood of successfully

completing the problems. We know that algorithms and structures

serve as important features of code, so can code generation be

enhanced by incorporating algorithms and structures? Hence, we

consider infusing some knowledge into the problems in the assis-

tance of in-context learning. This approach can serve to augment

ChatGPT’s relevant knowledge, thereby ameliorating its proficiency

in solving previously unencountered problems.

In previous research, Jiang et al. [14] put forth a code genera-

tion method termed “Self-planning”. This technique harnesses the

innate capability of LLMs to strategize the programming problem,

thereby guiding the code generation process. Concurrently, Li et

al. [15] proposed a method called “Brainstorming Boost”, aimed

at stimulating LLMs for deeper introspection. Dong et al. [16] em-

ployed a multi-role interaction model to facilitate cooperation and

interaction amongst LLMs during code generation tasks. Drawing

inspiration from these methods, we opted to enhance the input

information fed into LLMs to improve their inferential capabilities

when addressing previously unencountered problems. This in turn

improves their generalization capacities for handling new program-

ming problems. Consequently, we are introducing a new approach

named Knowledge-Aware Code Generation (KareCoder).

Specifically, we first organized and built a Knowledge Library

involving algorithms and data structures information based on

the tags of algorithms and data structures that may be used in

complex programming problems. Subsequently, KareCoder exploits

the planning capabilities of LLMs in conjunction with the exter-

nal Knowledge Library to direct code generation. The operational

process of KareCoder unfolds over two distinct stages:

• Prompt Engineering Stage: In this stage, the LLMs learn

the one-shot example prompt that we furnish and subse-

quently generate knowledge-aware prompt pertinent to the

problem based on the algorithms and data structures infor-

mation in the Knowledge Library.

• Coding Stage: In this stage, we guide the LLMs to incorpo-

rate the problem and the prompt generated in the preceding

step. Then, under the guidance of the prompt, the model

systematically generates code which addresses the corre-

sponding programming problems.

In summary, the main contributions of this paper are as follows:

(1) We constructed a novel code generation dataset, CodeF, con-

sisting of problems manually crawled, cleaned and inspected

to mitigate the issue of data overlap with the training data

of LLMs. For each programming problem, we extracted per-

tinent information relating to the algorithms and data struc-

tures tags, difficulty and date (time of release).

(2) We assembled a Knowledge Library for Python program-

ming problems, detailing the algorithms and data structures

potentially employed in resolving programming problems.

We propose a approach grounded in LLMs, named Kare-

Coder, which amalgamates algorithms and data structures

knowledge into the code generation process.
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(3) We conducted a comprehensive validation of the efficacy of

KareCoder on both CodeF and APPS benchmarks. KareCoder

surpasses other competitors on CodeF (e.g., ChatGPT [8],

Self-planning [14], SCOT [17], SCOT&KareCoder), while

also demonstrating commendable performance on APPS in

comparison to other methods outside of ChatGPT.

2 RELATEDWORK

2.1 Code Generation

Model size divides code generation tasks into those using small

to medium models and LLMs. Ling et al. [18] first introduced a

method to translate natural language into code fragments utilizing

a sequence-to-sequence model. Sun et al. [19] adopted the Trans-

former architecture to resolve the issue of long-term dependencies

amongst code elements, proposing TreeGen to enhance the model

and incorporate information regarding the code structure. Wang

et al. [20] proposed CodeT5, which integrates the code’s features

during the pre-training phase, emphasizing the model’s reason-

ing about tokens with practical significance during the generation

phase. Dong et al. [4] devised a PDA-based approach to guarantee

the syntactic correctness of code generation.

As the volume of training data for language models proliferates,

more LLMs are being utilized for code generation. The emergence

of CodeBERT [21] has marked a new epoch in the use of pre-trained

LLMs. Pre-trained LLMs such as CodeGen [6], InCoder [22], CodeX

[7], AlphaCode [23], Code Llama [24] and StarCoder [25] have

yielded significant enhancements in code generation performance.

Beyond these models tailored for code-related tasks, ChatGPT [8],

a model designed for problem-and-answer applications, has also

demonstrated remarkable code generation capabilities.

2.2 Code Generation Dataset

MBPP [11] and HumanEval [7] are datasets commonly utilized in

code generation related research [3, 14, 16]. They comprise hand-

written programming problems, which are intrinsically simple.

They include only rudimentary task descriptions and provide rela-

tively short solutions, thereby not meeting the complexity required

for our daily tasks. Conversely, datasets like APPS [12], derived

from several open-source programming competition websites, of-

fer considerably more challenging and lengthier problems, thus

serving as a more objective measure. CodeContest [23], designed

to fine-tune and evaluate the AlphaCode model, has observed a

significant enhancement in the quality of test cases compared to

previous datasets. Despite the satisfactory performance of these

datasets, there exists a need for a new dataset that will not overlap

with the training data of ChatGPT. The cutoff time for the training

data of ChatGPT, which OpenAI has made public [13], is September

2021. In order to circumvent a substantial count of false positives in

the training data when working with LLMs, there is an immediate

requirement for a new dataset encompassing data from September

2021 onwards. Furthermore, the dataset also needs to include the

algorithms and data structures tags recommended for the prob-

lems to enable more effective integration of algorithms and data

structures information.

2.3 Prompt Techniques

As LLMs grow in size and parameters, fine-tuning them needs more

resource and time. Numerous recent studies[26–28] have explored

enhancing the performance of LLMs by integrating prompts. For in-

stance, Zhang et al. [29] introduced an automated COT prompting

method, AutoCoT, which samples diverse problems and generates

inference chains to construct examples. Concurrently, Zhou et al.

[30] proposed a least-to-most prompting strategy, where complex

problems are segmented into a series of sub-problems that are then

sequentially addressed. Similarly, Liu et al. [31] delved into the

feasibility of guiding ChatGPT in code generation tasks through

manually crafted prompts. By incorporating some external infor-

mation, we could offer prompts to LLMs, thereby enabling them to

generate superior prompts for task planning.

3 SUPPORT DATA DESIGN

In this section, we delineate the dataset CodeF and Knowledge

Library that we assembled. Specifically, we expound on the reasons

behind constructing a new dataset for a programming competi-

tion problem, the sources of CodeF and the three distinct types of

Knowledge Libraries that we formulated.

3.1 Dataset Collection

Models are conventionally divided into two crucial phases: training

and testing. Our research aims to explore the intricate interplay be-

tween algorithms, data structures and the overlap between training

and testing sets, and their influence on the code generation capa-

bility of large models. We undertook the creation of a specialized

dataset for an algorithm-centered programming competition, which

we named CodeF. This dataset is informed by the methodologies

and insights gained from creating the TACO dataset [32]. Taking

September 2021 (the cutoff date for ChatGPT’s training data [13]) as

the node, we divided CodeF into two parts: CodeF pre2021-9 whose

problems ChatGPT might have encountered during its training,

CodeF post2021-9 which consists of problems that ChatGPT would

not have previously seen.

In this study, we have constructed a new dataset of Python pro-

gramming problems, CodeF, which incorporates 1523 problems

posted from January 2020 to April 2023 on the CodeForces2 pro-

gramming website. As depicted in Figure 2, the creation of CodeF

primarily involves two phases: data acquisition and processing.

During the data acquisition phase, we evaluated several pro-

gramming contest platforms, including Codeforces, HackerRank

and Geeksforgeeks. Factors such as legal restrictions, interface

complexities of the platforms and our specific requirement for al-

gorithms and data structures tag for the problems, as well as the

release time information, led us to select CodeForces (a program-

ming competition website) as our data source. In order to ensure

dataset quality, we designed an HTML parser specifically tailored

for the CodeForces site. We crawled the site for problem description,

solution, input and output examples and a set of associated labels,

which include difficulty, date and tag (indicating algorithms and

data structures suitable for solving the problem), etc. We consoli-

dated all the problems into a standardized format.

2https://codeforces.com
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Programming
Website Data Crawler

CodeF Post2021-9

Data CleaningProblem Select

CodeF Pre2021-9

Data Split

Figure 2: Schematic diagram of CodeF acquisition and processing. The processing part includes data cleaning and splitting.

Table 1: Subsets of Simple, Medium and Hard difficulties in

CodeF Post2021-9 and CodeF Pre2021-9 datasets.

Dataset Difficulty Difficulty Range Problem Number

Simple *800 000-099

Medium *1300-*1600 400-499
CodeF

Post2021-9
Hard *1900-*2500 600-699

Simple *800 000-099

Medium *1300-*1600 400-499
CodeF

Pre2021-9
Hard *1900-*2200 640-739

Table 2: Descriptive statistics of CodeF.

Dataset
Average question

token

Average algorithm

tags number

CodeF 2047.1 3.1

CodeF pre2021-9 2018.7 3.2

CodeF post2021-9 2079.0 3.0

During the data acquisition process, we endeavoured to ensure

the consistency of our data with that of the CodeForces website.

However, since the code was sourced from user submissions, often

embedded with comments and potential error codes, we imple-

mented the following measures during the data processing phase:

• Code De-commenting: For a cleaner CodeF and to remove

comments that are considered invalid information, we em-

ployed Abstract Syntax Tree (AST) parsing to remove com-

ment nodes from code that was heavily annotated.

• Code De-duplication: We collected codes from various

users, leading to potential duplicates. Using the MinHash

algorithm and Jaccard index, with a threshold of 0.85, we

minimized these duplicates to unique files.

• Unit Test Validation: Although we extracted code that was

verified as correct by the website, we conducted unit tests on

all codes to prevent errors during parsing. This step assured

the accuracy of the test cases and codes.

According to the cutoff date of ChatGPT’s training data - Sep-

tember 2021, we partitioned the dataset into CodeF pre2021-9 (com-

prising 805 problems) and CodeF post2021-9 (consisting of 718

problems). We got the raw data on the difficulty of the problems

from the CodeForces website. The difficulty level of all problems is

(a) Distribution of CodeF.

(b) Distribution of CodeF pre2021-9.

(c) Distribution of CodeF post2021-9.

Figure 3: Distribution of algorithms and data structure tags.

denoted in the format “*xxx” (ranging from *800-*31003). In order

to explore the rules of different difficulty problems, we classified the

datasets according to the level of difficulty and extracted one hun-

dred problems each from the Simple, Medium and Hard difficulty

categories from both datasets, as depicted in Table 1.

To verify the reasonableness of the two parts of the data after

we divided CodeF with the time of September 2021 as the node, we

analyzed the average problem length and the average number of

algorithm tags of the CodeF and the two parts of CodeF, as shown

in Table 2. We invited eight students with proficient knowledge of

algorithms and data structures to examine the algorithm and data

3The difficulty level of which were sourced from the CodeForces programming website.
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� �
1 // Knowledge Description:
2 // This is the default Knowledge Library of KareCoder.
3 Greedy:The greedy algorithm is a heuristic approach that selects the best

available option at each step without considering the long-term impact.
It is useful for optimization problems where finding an exact
solution is intractable, but may not always lead to the optimal
solution. Greedy algorithms are easy to implement and efficient.

4 ----------------------------------------------------------------------------
5 // Knowledge pseudo-code:
6 Greedy:function Greedy(problem):
7 solution = empty_solution()
8 while not problem_solved(problem, solution):
9 candidate = find_best_candidate(problem, solution)
10 add_candidate_to_solution(candidate, solution)
11 return solution
12 ----------------------------------------------------------------------------
13 // Knowledge Step of pseudo-code:
14 Greedy:1.Initializes an empty solution.
15 2.Enters a loop until the problem is solved, based on the solution.
16 3.Finds the best candidate for the next step based on the problem and

the current solution.
17 4.Adds the best candidate to the solution.
18 5.Continues to the next iteration of the loop.
19 6.Once the problem is solved, it returns the

�
final solution.

�

Figure 4: Examples of different Knowledge Libraries. The

corresponding Greedy algorithm is shown here.

structures tags in our CodeF dataset, and eventually summarized

33 categories of tags. Meanwhile, in order to show the distribution

of various types of algorithms and data structures on the problems

of our dataset more intuitively, the distribution of tags was also

summarized using statistical methods. The classification of all 33

algorithms and data structures tags in different parts of the CodeF

dataset is shown in Figure 3.

Although our original intention of creating CodeF was to test

the effectiveness of LLMs on programming problems of different

vintages. After a series of rigorous processing during the construc-

tion of our dataset, in the end, CodeF dataset can be used as training

data for code generation models, and the algorithms and data struc-

tures information in it is also can be applied to the fields of code

understanding and code algorithm recommendation.

3.2 Knowledge Library

To enhance ChatGPT’s proficiency in tackling novel programming

problems, it is necessary to equip it with knowledge about algo-

rithms and data structures. This knowledge serves as contextual

reference information during the generation of prompts to address

these problems. Specifically, we have conceptualized three formats

of the Knowledge Library and investigated the effectiveness of these

varying formats for prompt generation in RQ2 (see Section 6.2).

We used resources such as ChatGPT and Google search engines

to gather initial information and refer to the book Competitive Pro-

grammer’s Handbook [33] for organization. Concurrently, we in-

vited a group of individuals proficient in competitive programming

knowledge. We manually refined and summarized the descriptions

of each algorithm and data structure tag (these tags include all tags

of CodeF problems). Our Knowledge Library of algorithms and

data structures covers as much as possible the knowledge used in

common programming problems. We invited seven employees and

interns from companies in the programming industry to manually

evaluate the correctness of the knowledge in our Knowledge Li-

brary. They evaluated all 33 pieces of knowledge and revised the

final Knowledge Library to correctly explain each algorithm or data

structure.

Our Knowledge Library is stored in the form of a dictionary, with

each tag and its knowledge forming a one-to-one correspondence,

i.e., {“tag”: “knowledge”}. Ultimately, we integrated the information

from the manually evaluated knowledge to build our Knowledge

Library. Figure 4 provides a few examples from the Knowledge

Library. The Knowledge Library we devised principally assumes

the following three formats:

• Knowledge Description: This format provides a defini-

tive overview of algorithms and data structures knowledge,

encompassing descriptions of their properties and defini-

tions. With this type of Knowledge Library, ChatGPT can

comprehend the basic characteristics and applications of

the corresponding algorithms and data structures, thereby

generating appropriate problem-solving prompts.

• Knowledge Pseudo-Code: This Knowledge Library offers

pseudo-code explanations of algorithms and data structures,

emulating programming syntax to describe the steps and

procedures involved in algorithms and data structures. By

exploring this library, ChatGPT can understand the specific

implementation of the corresponding programming knowl-

edge, resulting in prompt skewed towards solution steps.

• Knowledge Step of Pseudo-Code: This form of Knowledge

Library provides a textual step-by-step explanation of the

pseudo-code associated with algorithms and data structures

knowledge. With its assistance, ChatGPT can understand the

steps and flow of programming knowledge from a natural

language perspective.

In our Knowledge Library, we offered descriptions, pseudo-code

examples and steps of pseudo-code for 33 algorithms and data

structure categories, such as greedy and dynamic programming. Es-

sential to the KareCoder method, this content complements CodeF.

Additionally, it can be integrated with the CodeF to train models

for applications in code generation and code evaluation domains.

4 APPROACH

In this section, we present a new method: KareCoder. We begin

with an overview of KareCoder and present it in two stages.

4.1 Overview

Code generation aims to help solve programming problems. We

postulate that the thought process of LLMs parallels that of hu-

man programmers, which can be bifurcated into two stages when

tackling programming problems: initially, comprehending the prob-

lem and learning or recalling knowledge that may be applied to

its solution, followed by formulating a preliminary plan; secondly,

executing code writing based on this plan.

While a majority of problems on programming platforms come

with algorithmic or data structure tags, there exists a subset of

problems from non-programming platforms or datasets, such as

APPS, lacking these algorithmic tags. To enhance the adaptability

of KareCoder, we developed a tag generator, drawing from Chat-

GPT and Prompt technologies and based on our Knowledge Library.

This generator can formulate or rectify tags, especially for problems

that either lack them or have tags misaligned with our Knowledge
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Knowledge
Prompt

Examples

Problem

Knowledge
Library

Solution
Examples

Problem

Knowledge
Prompt

1. Read t, the
number of test
cases.
2. Loop t times.

(more...)
7. Print the value
of count as the
output.
8. End the loop.

Prompt
Engineer Coder

Without Tag

With Tag

Problem KareCoder Codes

How to
solve the
problem Do we need these

knowledges?
How to complete
the code?

t=int(input())
for i in range(t):
  count=0
 (more...)
  print(count)

Prompt Code

Tag Generator

Figure 5: An overview of KareCoder. Given a programming problem, KareCoder matches the Knowledge Library appropriate to

the problem and then generates a prompt for solving the problem. Finally, the prompt is used to guide the generation of code.

Library. We evaluated the tag generator’s accuracy with Cohen’s

Kappa and manual evaluation methods. Leveraging this tag genera-

tor, we ensure a seamless integration of each programming problem

into KareCoder’s processing framework. Consequently, as depicted

in Figure 5, we connected a tag generator in front of KareCoder

and partitioned the workflow of KareCoder into two stages, Prompt

Engineering and Coding, adhering to a sequential approach to the

task:

• In Prompt Engineering Stage, we designate ChatGPT as a

prompt engineer, accountable for comprehending the prob-

lem and learning as well as reviewing the algorithms and

data structures knowledge pertinent to resolving the prob-

lem, subsequently generating a problem-solving prompt.

• In Coding Stage, we assign ChatGPT the role of a coder,

tasked with perusing the problem and implementing this

solution in a programming language, guided by the prompt

provided by the prompt engineer.

4.2 Prompt Engineering Stage

In Prompt Engineering Stage, we regard ChatGPT as a prompt

engineer. We anticipate that ChatGPT will acquire the relevant

knowledge needed for resolving programming problems, subse-

quently, based on its pre-existing knowledge complemented by

newly recalled information, it will develop a prompt for addressing

the problem. Given ChatGPT’s input window constraints, inputting

the entire Knowledge Library isn’t viable. Therefore, we update and

customize the knowledge for each problem by performing absolute

value matching via dictionaries to associate the tags of the problem

with the tags in the Knowledge Library. The working principle

of dictionary matching is as follows: The corresponding relation-

ships between the dataset and the Knowledge Library are <problem,

tag> and <tag, knowledge>, respectively. We can achieve matching

through the tag in both of them.

As depicted in Figure 6, we manually constructed a one-shot

example (𝑋 ) that generates a knowledge-aware prompt (𝑃 ) based on

� �
1 // Problem (Q):
2 There is a string s of length 3, consisting of uppercase and lowercase

English letters. Check if it is equal to "YES" (without quotes), where
each letter can be in any case. For example, "yES", "Yes", "yes" are
all allowable. (more ...)

3 // Knowledge Description (K'):
4 Brute force: Brute force is a straightforward approach to problem-solving

that exhaustively searches all possible solutions. (more ...)
5 Strings: Strings are sequences of characters used to represent text or other

data in a computer program. (more ...)
6 ------------------------------------------------Example (X)-----------------
7 //Knowledge-aware Prompt (P):
8 (more...)
9 2. Loop t times to read each test case string s.
10 3. Convert the string s to lowercase using the built-in function lower().
11 4. Check if the string s is equal to "yes".
12 (more...)

� �� �
1 // Problem (Q):
2 You are given a grid with n rows and m columns. We denote the square on the i

-th (1 ≤ 𝑖 ≤ 𝑛) row and j-th (1 ≤ 𝑗 ≤ 𝑚) column by (i, j) and the
number there by 𝑎𝑖 𝑗 . All numbers are equal to 1 or to -1. You start
from the square (1, 1) and can move one square down or one square to
the right at a time. You want to end up at the square (n, m). Is it
possible to move in such a way so that the sum of the values written
in all the visited cells (including 𝑎11 and 𝑎𝑛𝑚) is 0? (more...)

3 // Knowledge Description (K'):
4 DP: Dynamic programming, is a technique used to solve complex problems by

breaking them down into smaller, simpler sub-problems. It involves
solving each sub-problem only once and storing the solutions in a
table for future use. (more...)

5 ------------------------------------------------Prompt Engineer-------------
6 // Knowledge-aware Prompt (P):
7 (more...)
8 6.Initialize an array dp of size m+1 with zeros. # DP initialization.
9 7.Loop n times, set dp[0] to 1 if i=0, else 0. # DP boundary conditions.
10 8.Loop m times, compute the value of dp[j + 1] based on dp[j], dp[j + 1] and

the element at a[i][j]. The bit shift operation is used here to handle
the state transition. # DP status transfer.

11 9.Check the (n+m-1)//2 bit of dp[-1]. If it is 1, print "YES"; otherwise,
print "NO". # DP result check.

12

�
(more...)

�

Figure 6: Illustration of the input and output of Prompt Engi-

neering Stage. The input includes a example, a new problem

and its corresponding knowledge description, the output is

the knowledge-aware prompt for the new problem.

the problem (𝑄) and the knowledge description (𝐾 ′) in our Knowl-

edge Library (𝐾). The one-shot example (𝑋 ) we developed was
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� �
1 // Problem (Q):
2 There is a string s of length 3, consisting of uppercase and lowercase

English letters. Check if it is equal to "YES" (without quotes), where
each letter can be in any case. For example, "yES", "Yes", "yes" are
all allowable. (more ...)

3 // Knowledge-aware Prompt (P):
4 (more...)
5 2. Loop t times to read each test case string s.
6 3. Convert the string s to lowercase using the built-in function lower().
7 4. Check if the string s is equal to "yes".
8 (more...)
9 ------------------------------------------------Example (Y)------------------
10 // Solution Code (C):
11 (more...)
12 for i in range(t):
13 s = input()
14 s = s.lower()
15 print('YES' if s == 'yes' else 'NO')
16 (more...)

� �� �
1 // Problem (Q):
2 You are given a grid with n rows and m columns. We denote the square on the i

-th (1 ≤ 𝑖 ≤ 𝑛) row and j-th (1 ≤ 𝑗 ≤ 𝑚) column by (i, j) and the
number there by 𝑎𝑖 𝑗 . All numbers are equal to 1 or to -1. You start
from the square (1, 1) and can move one square down or one square to
the right at a time. You want to end up at the square (n, m). Is it
possible to move in such a way so that the sum of the values written
in all the visited cells (including 𝑎11 and 𝑎𝑛𝑚) is 0? (more...)

3 // Knowledge-aware Prompt (P):
4 (more...)
5 6.Initialize an array dp of size m+1 with zeros. # DP initialization.
6 7.Loop n times, set dp[0] to 1 if i=0, else 0. # DP boundary conditions.
7 8.Loop m times, compute the value of dp[j + 1] based on dp[j], dp[j + 1] and

the element at a[i][j]. The bit shift operation is used here to handle
the state transition. # DP status transfer.

8 9.Check the (n+m-1)//2 bit of dp[-1]. If it is 1, print "YES"; otherwise,
print "NO". # DP result check.

9 (more...)
10 ------------------------------------------------Coder---------------------
11 // Solution Code (C):
12 (more...)
13 dp = [0] * (m + 1) # DP initialization.
14 for i in range(n): # DP body.
15 dp[0] = int(not i) # DP boundary conditions.
16 for j in range(m): # DP status transfer.
17 dp[j + 1] = (dp[j] | dp[j + 1]) << (a[i][j] == -1)
18 if dp[-1] & (1 << ((n + m - 1) // 2)): # DP result check.
19 print("YES")
20 else:
21 print("NO")
22 (more...)

� �

Figure 7: Illustration of the input and output of Coding Stage.

The input includes a example, a new problem and its cor-

responding prompt for generating code, the output is the

solution code for the new problem.

curated by eight students involved in the review of CodeF’s algo-

rithm and data structure tags. Following the review, we identified

four representative examples for experimentation, ultimately select-

ing one as the one-shot example. Subsequently, we concatenated

the new problem with a DP (dynamic programming) knowledge

description derived from the Knowledge Library. Relying on the

one-shot example we provided and the DP algorithms pertinent

to the new problem, we crafted a step-by-step problem-solving,

knowledge-aware prompt. Full details are available on our GitHub4.

Let 𝑄 represent the problem, 𝑃 represent the knowledge-aware

prompt,𝐾 signify the Knowledge Library,𝐾 ′ signify the knowledge

description,𝑋 denote a set of examples utilized to generate prompts

based on the problem and the knowledge description, i.e., 𝑋 ={〈
𝑄𝑥 , 𝐾

′
𝑥 , 𝑃𝑥

〉}𝑛
𝑥=1. Consequently, the knowledge-aware prompt

generation problem can be modelled as:

𝑓 (𝑃 | 𝑄,𝐾,𝑋 ) � 𝑓
(
𝑃 | 𝑄,𝐾 ′, 𝑋

)
·𝑚

(
𝐾 ′ | 𝑄,𝐾

)
(1)

4https://github.com/CodeGeneration3/KareCoder

Herein, 𝑓 represents the generative tasks completed using Chat-

GPT,𝑚 signifies the dictionary-matching tasks of knowledge.

4.3 Coding Stage

During Coding Stage, we conceptualize ChatGPT as a Coder, with

the expectation that it can integrate the problem and the knowledge-

aware prompt to generate code that resolves the problem. The objec-

tive of this stage is to transform a step-by-step prompt, represented

in natural language, into an executable program. As illustrated in

Figure 7, this diagram schematically portrays the Coding Stage. Full

details are available on our GitHub.

Let 𝑄 represent the problem, 𝑃 stand for the knowledge-aware

prompt, 𝐶 symbolize the generated code, and 𝑌 correspond to a set

of examples pertaining to code generation, which are predicated on

the problem and the associated prompt, i.e., 𝑌 =
{〈
𝑄𝑦, 𝑃𝑦,𝐶𝑦

〉}𝑛
𝑦=1.

The one-shot example (𝑌 ) was summarized using the same approach

as one-shot example (𝑋 ). Therefore, the task of code generation

based on the prompt can be mathematically formulated as :

𝑓 (𝐶 | 𝑄, 𝑃,𝑌 ) (2)

Subsequently, the comprehensive KareCoder approach can be

mathematically represented as:

𝑓 (𝐶 | 𝑄,𝐾) � 𝑓 (𝐶 | 𝑄, 𝑃,𝑌 )·︸������������︷︷������������︸
Generate-Code

𝑓 (𝑃 | Q,K′,X)·︸�������������︷︷�������������︸
Generate-Prompt

𝑚(𝐾 ′ | 𝑄,𝐾)︸����������︷︷����������︸
Match-Knowledge

(3)

5 ENVIRONMENT SETUP

5.1 Reserach Questions

In this research, we introduce KareCoder that supplements Chat-

GPT with a Knowledge Library to guide its operation. To evaluate

the efficacy of KareCoder and to analyze the associated influencing

factors, we explore the following research questions (RQs):

RQ1: How does the KareCoder perform compared to other

baselines? The objective of this RQ is to ascertain whether Kare-

Coder can produce programs of greater accuracy than other meth-

ods. We conducted comparisons using the CodeF post2021-9 dataset

as well as subsets of the dataset delineated by levels of difficulty -

Simple, Medium and Hard.

RQ2: What is the better choice for the Knowledge Library?

Determining how to enable ChatGPT to better utilize programming

knowledge without constraining its innate reasoning abilities is

a challenge we need to address. Consequently, we have designed

three distinctive forms of the Knowledge Library for evaluation.

RQ3: Will different shot times and ChatGPT Settings af-

fect the KareCoder performance?Within this RQ, we examined

the impact of employing k-shot examples on the effectiveness of

KareCoder and whether variations in parameter settings affect

KareCoder’s performance under a 1-shot example condition.

RQ4: Is KareCoder only valid because of the datasets we

used? This can be a confusing issue for many people. Hence, we

also tested our methods on the first 500 problems from the APPS test

set to demonstrate that the efficacy of KareCoder is not contingent

upon a specific dataset.
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5.2 Benchmarks

CodeF Dataset: CodeF is a Python task dataset that we devel-

oped. These problems are sourced from the CodeForces website

and range from January 2020 to April 2023, encompassing a total of

1523 problems. Of these, 805 problems are from the period prior to

September 2021 and 718 problems are from the subsequent period.

Our experiments are primarily focused on the problems posed after

September 2021. From these problems, we extracted three subsets,

namely Simple, Medium and Hard, based on the level of difficulty.

APPS Dataset:We used the APPS dataset as an auxiliary valida-

tion source in our experiments. The APPS dataset is derived from

various programming competition websites, including CodeForces,

LeetCode, CodeChef, etc. The training set comprises 5,000 problems,

while the test set also contains 5,000 problems. In our experiments,

we selected the first 500 problems of the test set for our tests.

5.3 Comparison Baselines

For the purposes of comparison, we selected ChatGPT, two recently

proposed methods for code generation, specifically, Self-planning

[14] and SCOT [17], and SCOT&KareCoder which combines the

Structured COT and Knowledge-aware method as baselines. Simul-

taneously, to further investigate the capabilities of each method,

we crafted a system prompt tailored for the four baselines methods

with the aim of enhancing the quality of the generation results.

ChatGPT [8] is an LLM proposed by OpenAI, it exhibits charac-

teristics similar to a question-and-answer system, with a powerful

code-writing ability. It exhibits exceptional performance in few-

shot cases. For our experiments, we utilized OpenAI’s API to call

ChatGPT with the specific model “gpt-3.5-turbo-0613”.

Plan is our implementation inspired by Self-planning [14]. The

Self-planning strategy encompasses two phases: planning phase

and implementation phase. Drawing from its idea, we fashioned a

two-phase process: initially, we allow ChatGPT to generate a step-

by-step prompt for problem-solving, following which, the code of

the problem is generated under the guidance of the prompt.

SCOT [17] aimed at investigating how to access the coding

mindset of LLMs in the context of code generation. SCOT first

generates a Structured COT, delineating the solution process in

programming logic, then transmutes this Structured COT into a

program using a specific programming language. SCOT specifies a

temperature setting of 0.8 and a Top_P value of 0.95, we adhered to

these parameters in our experiments.

SCOT&KareCoder is a way to combine KareCoder’s knowledge-

aware prompt with SCOT’s Structured COT. This baseline differs

from KareCoder in that instead of generating a step-by-step prompt

similar to the Plan approach in the Prompt Engineering Stage, we

generate a Knowledge-aware Structured COT to guide the code

generation.

5.4 Metrics

To evaluate the accuracy of the generated code, we used Pass@k

as an evaluation metric, as shown in the formula below. For each

problem, we generate n ≥ k copies of code and calculate the number

of correct samples that pass the test sample, c (where c ≥ n). In

our experiments, we generated 5 copies of code for each problem

and evaluated our approach using Pass@1, Pass@3 and Pass@5.

Notably, Pass@1 is especially important as it aligns more with

practical application needs.

𝑃𝑎𝑠𝑠@𝑘 = E
𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑠

⎡⎢⎢⎢⎢⎢⎢⎣
1 −

(
𝑛 − 𝑐
𝑘

)
(
𝑛
𝑘

)
⎤⎥⎥⎥⎥⎥⎥⎦
. (4)

6 RESULT AND ANALYSIS

In conducting the experiments for these research questions, we

adhere to a default configuration of a one-shot setting, with the

temperature parameter set to 1 and the Top_p parameter also set to

1. Should there be alterations to this configuration, we will explicitly

specify them. The comparative rule utilized in our study involves

contrasting KareCoder (marked in blue in the tables) with the other

best methods (marked in yellow in the tables).

6.1 RQ1: Performance Comparison

1) Evaluation on Simple, Medium and Hard difficulties of

CodeF Post2021-9. Within RQ1, we examined the effectiveness of

the knowledge introduced by KareCoder on three difficulty levels

(Simple, Medium and Hard) within the CodeF post2021-9 dataset

through a series of comparative experiments, which are depicted

in Table 3. We assessed the outcomes of direct code generation by

ChatGPT with 1-shot, as well as Plan, SCOT, SCOT&KareCoder

and KareCoder under 1-shot and 3-shot conditions, respectively.

The analyses of these results are as follows:

• KareCoder approach markedly excelled beyond other ap-

proaches in terms of the Pass@1 performancemetric. This en-

hancement is largely ascribed to the creation of a knowledge-

aware prompt, individually tailored to each programming

problem. Such prompts not only directed the code generation

process but also markedly bolstered the code’s correctness,

aligning with our objective of augmenting the Pass@1 per-

formance index.

• Nevertheless, in Pass@3 and Pass@5 metrics, KareCoder

still outperformed other methods, but it didn’t achieve the

significant gains that direct code generation with ChatGPT

did. This results likely arises from the inherent risks asso-

ciated with the intermediate step of prompt or Structured

COT generation. Though designed to facilitate code pro-

duction, inaccuracies in these generated elements have the

potential to compromise the precision of all subsequent code

generation pertaining to the specific problem at hand.

• In our study, KareCoder outshone in 1-shot Pass@k met-

rics, except Hard level, with over 20% advantages in Pass@3

and Pass@5 in simple and medium level. In addition, Kare-

Coder’s in the 3-shot experiment did not result in an abso-

lute advantage. However, multiple shots may lead to waste

of resources caused by long input length. Thus, we favor

fewer-shot techniques, a preference supported by our RQ3

experiment assessing KareCoder’s efficiency.

2) Evaluation on the CodeF Post2021-9. Further tests on the

CodeF Post2021-9 dataset confirm KareCoder’s efficacy. As Table 4

illustrates, on the Pass@1 metric, KareCoder and the Plan method

achieve 15.9% and 14.2% respectively, ranking first and second, far

59



Knowledge-Aware Code Generation with Large Language Models ICPC ’24, April 15–16, 2024, Lisbon, Portugal

Table 3: Comparative evaluation of KareCoder and other methods on Simple, Medium and Hard difficulties of CodeF Post2021-9.

Simple Medium Hard
Method

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

ChatGPT 26.1 39.8 46.2 7.0 15.0 19.5 6.0 10.4 12.4

ChatGPT+Plan 28.5 31.8 33.6 5.1 7.6 8.4 7.3 8.6 9.0

ChatGPT+SCOT 19.1 24.3 25.2 6.4 11.3 13.1 7.7 11.6 12.4
ChatGPT+SCOT&KareCoder 24.7 25.0 25.0 7.7 9.2 9.6 7.3 8.0 8.0

ChatGPT+KareCoder 30.5 38.8 41.8 10.5 14.4 16.4 7.4 11.1 12.5

Relative Improvement 7.0% ↑ 22.0% ↑ 24.4% ↑ 36.4% ↑ 27.4% ↑ 25.2% ↑ -3.9% ↓ -4.3% ↓ 0.8% ↑

ChatGPT+Plan(3-shot) 29.7 31.9 32.4 7.1 12.5 15.8 6.5 7.9 8.5

ChatGPT+SCOT(3-shot) 29.9 30.0 30.0 10.8 12.2 12.5 7.7 9.4 9.8

ChatGPT+SCOT&KareCoder(3-shot) 29.7 30.0 30.0 9.1 10.5 10.9 8.8 9.8 9.9
ChatGPT+KareCoder(3-shot) 31.5 34.1 34.9 9.3 10.9 11.5 9.6 11.7 12.5

Relative Improvement 5.4% ↑ 6.9% ↑ 7.7% ↑ -13.9% ↓ -12.8% ↓ -27.2% ↓ 9.1% ↑ 19.4% ↑ 26.3% ↑

Table 4: Comparative evaluation of KareCoder with other

methods on the CodeF post2021-9.

Method Pass@1 Pass@3 Pass@5

ChatGPT 12.9 22.4 26.9

ChatGPT+Plan 14.2 17.3 18.3
ChatGPT+SCOT 11.2 14.2 15.0

ChatGPT+SCOT&KareCoder 14.0 15.2 15.5

ChatGPT+KareCoder 15.9 19.8 21.3

Relative Improvement 12.0% ↑ 14.5% ↑ 16.4% ↑

more than the results generated directly by ChatGPT; conversely,

in terms of the Pass@3 and Pass@5 metrics, ChatGPT’s direct gen-

eration remains the most effective. The rationale behind this phe-

nomenon has been comprehensively discussed in the previous part

of this RQ. Compared with the Plan, SCOT and SCOT&KareCoder

methods, KareCoder attains a relative improvement of 12.0%, 14.5%

and 16.4% on the Pass@1, Pass@3 and Pass@5 metrics, respectively.

Answer to RQ1: Experiments on CodeF post2021-9 and its sub-

sets—Simple, Medium and Hard show that KareCoder considerably

enhances ChatGPT’s performance on the Pass@1 metric. Never-

theless, due to constraints arising from the intermediate process,

KareCoder does not outperform the direct usage of ChatGPT on

the Pass@3 and Pass@5 metrics but maintains advantage over

other methods when evaluated on the Pass@3 and Pass@5 metrics.

6.2 RQ2: Effectiveness of Knowledge Type

1) Library Variants. The Knowledge Library is a critical compo-

nent of KareCoder. This research proposes a Knowledge Library

dedicated to algorithms and data structures, specifically designed

for programming problems. This innovation aims to addresses Chat-

GPT’s “knowledge forgetting” during solution planning, specifically

the loss of necessary programming knowledge. For this research

question, we investigated various Knowledge Library alternatives

and contrasted different design possibilities. We built three distinct

Knowledge Libraries, namely: Knowledge Pseudo-code, Knowledge

Steps of Pseudo-code and the Knowledge Description employed

by KareCoder. Further details regarding these diverse Knowledge

Libraries can be found in Section 3.2.

2) Results. As demonstrated in Table 5, among the three Knowl-

edge Librarys, the Knowledge Description yielded themost superior

performance, achieving the highest scores across all difficulty levels

on the Pass@1, Pass@3 and Pass@5 metrics. Notably, its relative

improvement reached 15.1%, 16.7% and 13.8% on the Pass@1 metric.

Moreover, KareCoder utilizing the Knowledge Description consis-

tently outperforms the Plan method without a Knowledge Library.

These results suggest that LLMs exhibit improved performance

in handling novel problems when suitable external information

is integrated. Conversely, the integration of unsuitable external

information could potentially yield adverse effects.

Answer to RQ2: Based on the current analysis, the Knowledge De-

scription of the Knowledge Library has exhibited the most promis-

ing results. Nonetheless, we conjecture that the performance of

KareCoder could be further enhanced by constructing more re-

fined Knowledge Libraries and implementing superior knowledge-

importing techniques in the future.

6.3 RQ3: Influence of Shot Times and Settings

In this RQ, we scrutinize the performance of KareCoder in relation

to varying shot times and parameter settings for ChatGPT, thereby

performing a stability analysis of the KareCoder method.

1) Impact of Shot Times. As indicated in Table 6, the results

derived from 1-shot, 2-shot and 3-shot experiments show that, Kare-

Coder’s effectiveness does not significantly fluctuate in response to

variations in shot times. When implementing ChatGPT, we must

also account for constraints related tomaximum input length.While

the “gpt-3.5-turbo-16k-0613” model can accommodate greater input

length, it is crucial to strike a balance between shot times and perfor-

mance, taking into account considerations related to computational

resources and associated costs. Taking these factors into account, it

is reasonable to conclude that the 1-shot setting adequately caters

to the vast majority of the method’s requirements.
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Table 5: Performance of KareCoder utilizing different Knowledge Libraries.

Simple Medium Hard
Knowledge Library

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

Knowledge Description 30.5 38.8 41.8 10.5 14.4 16.4 7.4 11.1 12.5

Knowledge Pseudo-code 23.5 27.3 28.7 9.0 12.7 14.2 6.5 8.0 8.6

Knowledge Step of Pseudo-code 26.5 29.3 29.8 7.4 10.7 12.0 5.9 7.9 8.8
Relative Improvement 15.1% ↑ 32.4% ↑ 40.3% ↑ 16.7% ↑ 13.4% ↑ 15.5% ↑ 13.8% ↑ 38.8% ↑ 42.0% ↑

Table 6: Comparative evaluation of KareCoder with different shot times on various difficulties of CodeF post2021-9.

Simple Medium Hard
Shot Times

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

1-shot 30.5 38.8 41.8 10.5 14.4 16.4 7.4 11.1 12.5

2-shot 30.7 34.2 36.1 12.6 15.5 16.8 6.0 8.0 9.0

3-shot 31.5 34.1 34.9 9.3 10.9 11.5 9.6 11.7 12.5

Relative Improvement -3.2% ↓ 13.5% ↑ 15.8% ↑ -16.7% ↓ -7.1% ↓ -2.4% ↓ -22.9% ↓ -5.1% ↓ 0%

Table 7: Comparative evaluation of KareCoder with different ChatGPT Settings on various difficulties of CodeF post2021-9. For

convenience of representation, we use “Tem” to represent “Temperature”.

Simple Medium Hard
ChatGPT Setings

Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5 Pass@1 Pass@3 Pass@5

Tem=0.8 Top_P=0.95 29.4 33.7 35.4 8.7 10.6 11.8 8.6 10.2 10.7

Tem=0.9 Top_P=0.95 29.3 31.5 32.2 8.8 10.5 11.7 6.2 7.6 8.0

Tem=1 Top_P=1 30.5 38.8 41.8 10.5 14.4 16.4 7.4 11.1 12.5

Relative Improvement 3.7% ↑ 15.1% ↑ 18.1% ↑ 19.3% ↑ 35.8% ↑ 39.0% ↑ -14.0% ↓ 8.8% ↑ 16.8% ↑

2) Impact of ChatGPT Settings.Within the RQ, we investigate

the degree to which various parameter settings, such as Temper-

ature and Top_P, impact the efficacy of KareCoder. As illustrated

in Table 7, KareCoder performs optimally when both Temperature

and Top_P are designated as 1. This may be attributed to the fact

that we furnished ChatGPT with an external Knowledge Library

and we did not impose stringent restrictions on the implementation

of algorithms and data structures within the Knowledge Library. In-

stead, we intended the Knowledge Library to serve as a guide, while

KareCoder necessitated a significant degree of randomness. Estab-

lishing Temperature=1 and Top_P=1 endows ChatGPT with greater

randomness, thereby circumventing the generation of chained er-

ror code owing to errors encountered during the production of

knowledge-aware prompt.

Answer to RQ3: Varying Shot times, 1-shot, 2-shot and 3-shot,

each setting exhibits unique benefits and limitations. Nonetheless,

when considering computational resource constraints, the 1-shot

setting is already sufficient to meet the accuracy demands of code

generation. As for the parameter configurations of ChatGPT, we se-

lect the default settings, specifically, Temperature=1 and Top_P=1,

to preserve the randomness of the outputs generated by ChatGPT

to enhance the effectiveness of KareCoder.

6.4 RQ4: Impact of Different Datasets

In an effort to comprehensively assess the efficacy of KareCoder,

we selected the first 500 problems from the open-source dataset,

the APPS test set and contrasted KareCoder’s performance with

other methods on these problems. As indicated in Table 8, five

methods were employed: direct code generation using ChatGPT,

Plan, SCOT, SCOT&KareCoder and KareCoder, the performance

of the other four methods has not been able to surpass ChatGPT,

the phenomenon that has been verified in previous research [15].

In light of the experimental results, we hypothesize that this may

be attributed to overlapping data within APPS that is present in

the ChatGPT training set. During the training process of ChatGPT,

the massive number of natural language-code pairs (<Text, Code>)

serve as training data. Consequently, ChatGPT can resolve these

problems without the prerequisite for problem planning.

In a comprehensive evaluation, KareCoder’s performance is ap-

proximately on par with the best of other methods and does not

manifest a marked superiority. This condition potentially be as-

cribed to ChatGPT’s prior exposure to open-source problems in

APPS, resulting in the additional knowledge failing to deliver an-

ticipated guidance. Nonetheless, in the experiments contrasting

these methods, KareCoder exhibits superior performance across

the Pass@k metric compared to the Plan method, which employs
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Table 8: Comparative evaluation of KareCoder with other

methods on the top 500 problems in the APPS test set.

Method Pass@1 Pass@3 Pass@5

ChatGPT 19.5 30.0 34.4

ChatGPT+Plan 9.2 11.1 11.9

ChatGPT+SCOT 13.3 14.2 14.4

ChatGPT+SCOT&KareCoder 13.0 15.0 16.1

ChatGPT+KareCoder 13.1 15.2 15.8
Relative Improvement -1.5% ↓ 1.3% ↑ -1.9% ↓

the same step-by-step prompt. Furthermore, the SCOT&KareCoder,

which incorporates external knowledge, exhibits a slightly lower

performance than SCOT alone on the Pass@1 metric but signifi-

cantly surpasses SCOT on the Pass@3 and Pass@5 metrics. From

this phenomenon, we can still discover the role of incorporating

knowledge into code generation through a two-by-two comparison

of Plan and KareCoder, SCOT and SCOT&KareCoder.

Answer to RQ4: Through experimentation on the first 500 prob-

lems drawn from the APPS test set, the outcomes directly generated

by ChatGPT markedly exceed those of the other four methods. De-

spite this, KareCoder retained advantages over the other three

methods, KareCoder’s performance is approximately on par with

the best of other methods.

7 THREATS TO VALIDITY

7.1 Internal Validity

Limited algorithms and data structures tags. Our experiments

were conducted mainly on the CodeF dataset, the algorithms and

data structures tags of CodeF are sourced from the CodeForces

programming website. When testing on dataset with no tags, e.g.,

APPS, matching programing problems with the Knowledge Library

is not feasible. To mitigate this issue, we devised prompts and 3-

shot examples to aid ChatGPT in predicting tags, recommending

suitable algorithms and data structures for problems lacking these

tags. Although we have checked the tags generated by tag gener-

ator manually, the algorithms and data structures recommended

may not always be the most fitting. The issue of recommending

more appropriate algorithms and data structures for new problems

remains an ongoing research challenge.

Limited Knowledge Library and methods of integrating

knowledge.KareCoder has yet to achieve optimality in terms of the

comprehensiveness of its Knowledge Library and the methods of

knowledge integration. The current Knowledge Library equipped

with KareCoder comprises information on algorithms and data

structures. We use contextual prompts to integrate knowledge and

problems and generate prompts that help solve programming prob-

lems. However, certain programming problems might necessitate

using internet resources or extensions from Python’s library. In the

future, we intend to expand our Knowledge Library and enhance its

quality, enabling KareCoder to access broader knowledge and con-

stantly updating the ways in which KareCoder acquires knowledge

to solve more complex programming problems.

7.2 External Validity

Limited dataset. At present, the specific training data of ChatGPT

is not publicly available, leaving us uncertain if there is an overlap

between the existing datasets and the training data of ChatGPT.

If we use the training data as the test set for inference, the value

of the research done would significantly diminish. Currently, we

can only test using the CodeF dataset, and we are lacking other

entirely new datasets to verify KareCoder’s effectiveness in code

generation. As the training data of ChatGPT gets updated, we may

need to continually explore new data for research.

8 DISSCUCCION

In this study, we assess the effectiveness of KareCoder by multiple

RQs. Initially, we conducted preliminary exploration on “gpt-3.5-

turbo-0301”, which was followed by expanded experiments on “gpt-

3.5-turbo-0613”. However, our investigation was constrained by

limited computational resources, preventing tests on a broader

range of LLMs. We aim to extend our testing to additional LLMs

to ascertain the scalability and practicality of KareCoder. The code

generation dataset CodeF, proposed in this research, is based on the

ChatGPT3.5 training data until September 2021. It is important to

note that the existing dataset partitioning might lose relevance due

to updates in the ChatGPT training data. To address this, we have

included release timestamps for each problem in the dataset. Users

are encouraged to download CodeF from our GitHub repository

and can re-split the dataset to ensure it remains uncontaminated

and relevant for their specific model requirements. Leveraging

our Knowledge Library, researchers can apply the approach of

integrating programming knowledge to diverse tasks. Nonetheless,

it is essential to acknowledge that creating new datasets for other

tasks, incorporating algorithms and data structures tags for these

tasks, demands a certain amount of human resource investment.

9 CONCLUSION

In this research, we aimed to circumvent the utilization of LLMs’

training data and thus constructed a new code generation dataset

CodeF. The experiment indicated that problems predating Septem-

ber 2021 surpassed those following this date in terms of the Pass@k

metric. We crafted a Knowledge Library specifically tailored for

programming algorithm problems, and introduced KareCoder. This

method integrates algorithms and data structures knowledge into

the intermediate process of code generation, specifically, during

the generation of knowledge-aware prompt. Experimental results

demonstrated that KareCoder notably outperforms other code gen-

eration methods based on LLMs, on the CodeF post2021-9 and the

first 500 problems of APPS datasets. This substantiates the research

value of integrating algorithms and data structures knowledge into

the code generation process.
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